

INDIANA-KENTUCKY ELECTRIC CORPORATION
3932 U. S. Route 23
P. O. Box 468
Piketon, Ohio 45661
740-289-7200

WRITER'S DIRECT DIAL No:
740-289-7259

January 30, 2026

Delivered Electronically

Mr. Clinton Woods
Commissioner
Indiana Department of Environmental Management
100 N. Senate Avenue
Mail Code 50-01
Indianapolis, IN 46204-2251

**Re: Indiana-Kentucky Electric Corporation
Clifty Creek Station's 2025 Annual CCR Landfill
Inspection Posting Notification**

Dear Mr. Woods:

As required by 40 CFR 257.106(g)(7) and 257.84(b), the Indiana-Kentucky Electric Corporation (IKEC) is providing notification to the Commissioner (State Director) of the Indiana Department of Environmental Management that a qualified professional engineer has completed the 2025 CCR Annual Landfill Inspection for IKEC's Clifty Creek Station. The inspection report has been placed in the facility's operating record as well as the company's publicly accessible internet site, which can be viewed at: <http://www.ovec.com/CCRCompliance.php>

If you have any questions, or require any additional information, please call me at (740) 289-7259.

Sincerely,

A handwritten signature in black ink that reads "Jeremy Galloway".

Jeremy Galloway
Environmental Specialist

JDG:zsh

**2025 CCR Rule – Landfill
Clifty Creek Landfill Inspection**

Clifty Creek Generating Station
Madison, Indiana
Jefferson County

January 19, 2026

Prepared for:

Indiana-Kentucky Electric Corporation
Piketon, Ohio

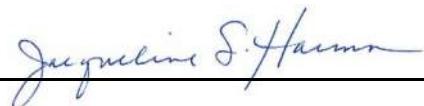
Prepared by:

Stantec Consulting Services Inc.
Cincinnati, Ohio

Sign-off Sheet

This document entitled 2025 CCR Rule – Landfill, Clifty Creek Landfill Inspection was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Indiana-Kentucky Electric Corporation (IKEC) (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule, and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use that a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by


(signature)

Austin Robinson, E.I.T.

Reviewed by

(signature)

Andrew Findley, E.I.T.

Reviewed by

(signature)

Jacqueline S. Harmon, P.E.

Table of Contents

1.0	OVERVIEW	1
2.0	DESCRIPTION OF CLIFTY CREEK LANDFILL.....	2
3.0	OBSERVATIONS	3
3.1	SURFACE WATER CHANNELS, STORMWATER/SEDIMENT BASINS, AND LEACHATE PONDS.....	3
3.2	TYPE I LANDFILL.....	7
4.0	RECOMMENDATIONS.....	8
5.0	REFERENCES	8

LIST OF APPENDICES

APPENDIX A FIGURES

APPENDIX B PHOTOGRAPHIC LOG

APPENDIX C REFERENCE DRAWINGS

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

Overview
January 19, 2026

1.0 OVERVIEW

Stantec Consulting Services Inc. (Stantec) performed the annual landfill inspection of the existing coal combustion residuals (CCR) landfill at the Clifty Creek Generating Station in Madison, Indiana on October 21, 2025.

This annual landfill inspection is intended to fulfill the requirements of 40 CFR 257.84(b) for the *Disposal of Coal Combustion Residuals from Electric Utilities* rule (CCR Rule) signed by the U.S. Environmental Protection Agency (EPA) Administrator on December 19, 2014, and published in the Federal Register on April 17, 2015.

The landfill is a restricted waste site (RWS) Type I, operating permit number 39-04, managed in accordance with the Indiana Department of Environmental Management's (IDEM's) regulations. Below is a summary of conditions for the day of the inspection:

Date performed:	October 21, 2025
Weather:	Sunny, 55°F - 65°F
Rainfall over previous 72 hours:	October 18, 2025 – 0.00 inch October 19, 2025 – 0.00 inch October 20, 2025 – 0.75 inches October 21, 2025 – 0.00 inch

Precipitation data was collected by the National Centers for Environmental Information (NCEI), a service provided by the National Oceanic and Atmospheric Administration (NOAA), for Clifty Creek, Indiana (USC00121615). Precipitation during the 72-hour period prior to the site visit was 0.75 inches. Rain was not observed during the actual site visit.

Stantec's team that performed the fieldwork included:

- Austin Robinson, E.I.T., Civil Engineer-in-Training
4 years of experience in site civil engineering, including industrial site design, drainage system design, and CCR storage facility design, closure, and operation.
- Andrew Findley, E.I.T, Civil Engineer-in-Training
3 years of geotechnical engineering experience, including supervision of geotechnical field explorations, geotechnical instrumentation monitoring, site drainage design, construction observation, and CCR storage facility design, closure, and operation.
- Cora Creekmur, Civil Engineering Intern
1 year of site civil engineering experience, including CCR storage facility design, closure, and operation.

Phase 2 of the Type 1 landfill was under construction during 2025. Stantec provided a full-time field associate for construction quality assurance and served as the Phase 2 engineer of record. Mr. Robinson and Jacqueline Harmon (the qualified professional engineer stamping this report) are part of the program

2025 CCR RULE – LANDFILL CLIFTY CREEK LANDFILL INSPECTION

Overview
January 19, 2026

management team and visited site at least monthly to observe field conditions.

IDE� regulations require monthly inspections of the landfill facility, which are performed by plant personnel. Inspections are being performed by plant personnel according to the CCR Rule at least once every seven days. Weekly reports performed between October 23, 2024 and October 29, 2025 and monthly reports for October 2024 through October 2025 were provided for review (IKEC 2025a and 2025b). The reports indicated that minor issues were observed, such as development of erosion rills, maintenance of check dams, maintenance of silt fence, and reseeding of bare areas. Subsequent reports indicate the issues were addressed regularly following identification. Weekly and monthly inspection reports also tracked the progress of construction in Phases 2 and 3 of the Type 1 landfill and ongoing maintenance within the minor landfill permit modification related to the sediment and leachate ponds.

IDE� is scheduled to inspect the facility on a routine/quarterly basis. The inspection reports are available on IDE�'s online virtual filing cabinet. Reports dated November 7 and December 3, 2024 (IDE�, 2024a and 2024b) and February 10, April 2, May 6, May 13, June 18, July 23, August 19, and September 2, 2025 were downloaded (IDE�, 2025a through 2025h). The station also provides annual drawing submittals to IDE�, showing existing and estimated five-year conditions (Stantec 2025a and 2025b).

The estimated volume of CCR contained in the landfill is 3,039,180 cubic yards as of October 8, 2025.

Fieldwork was coordinated with Chengyuan Li and Brent Gray from Clifty Creek Station's environmental department. Mr. Gray tracks the maintenance needs and activities through the weekly and monthly inspections. Mr. Li accompanied Stantec's personnel during the inspection. Observations were briefly discussed with onsite personnel during and after completion of the field activities.

2.0 DESCRIPTION OF CLIFTY CREEK LANDFILL

The Clifty Creek Generating Station is a coal-combustion generating station located in Madison, Jefferson County, Indiana. It is owned and operated by Indiana-Kentucky Electric Corporation (IKEC), a wholly owned subsidiary of OVEC. Clifty Creek Station's six units began producing electricity in 1955 and have a total generating capacity of 1,304 megawatts (IKEC, 2016).

In the late 1980s, IKEC converted the plant from ash sluicing to dry fly ash collection facilities. IKEC submitted a restricted waste construction/operation permit application to IDE� in 1986 to begin landfilling boiler slag and fly ash produced by the Clifty Creek Station. IDE� approved the fly ash landfill permit application as a Type III restricted waste landfill in 1988, and operations began in 1991.

In December 2006, IKEC applied for a major modification to its landfill permit to modify the existing Type III landfill to a Type I restricted waste landfill. The modification would enable the landfill to accept synthetic gypsum materials generated by the newly constructed flue gas desulfurization (FGD) systems. IKEC's major permit modification application proposed repurposing 109 acres of the originally permitted 200-acre Type III facility as a Type I facility to accept fly ash, boiler slag, synthetic gypsum, and other miscellaneous gypsum-related materials. IDE� approved IKEC's major permit modification in April 2008.

The Type I landfill has a capacity of 13.9 million cubic yards (FMSM, 2006) and included:

2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION

Description of Clifty Creek Landfill
January 19, 2026

- A composite liner system consisting of a Type 3 geosynthetics clay liner and a 30-mil flexible polyvinyl chloride (PVC) geomembrane in all phases,
- A leachate collection system, which historically directed flow eastward from part of Phase 1 to the West Boiler Slag Pond (WBSP) while the remainder flowed westward to the Landfill Runoff Collection Pond (LRCP),
- A contact and non-contact surface water management system, including sedimentation ponds, multiple sediment traps, drainage channels, and chimney drains that segregate water that comes into contact with the CCR and water that does not encounter the CCR,
- A groundwater monitoring system, and
- A final closure cap design.

See Appendix A for a station overview. Two ponds that have been historically associated with the landfill are:

- West Boiler Slag Pond (WBSP) – a surface impoundment east of the landfill that accepted sluiced boiler slag, which was periodically dredged and the material transported to the landfill for beneficial reuse. The impoundment also accepted most of the leachate from Subphases 1A and 1B, as well as surface water from the eastern side of the landfill.
- Leachate Runoff Collection Pond (LRCP) – a surface impoundment at the southwestern end of the landfill that accepted the remainder of the leachate and surface water from Phase 1 and the area between Phase 1 and the impoundment.

Initial site development and construction activities for Phase 1 of the new Type I landfill began in May 2008. The original Type III facility was soil capped during the site development. At the time of this annual inspection, the active landfill consisted of Phase 1. Subphases 1A and 1B are subdivided into Areas 1A1, 1A2, 1B1, and 1B2. Areas 1A1 and 1B1 were approved for waste placement in 2008. Areas 1A2 and 1B2 were approved for waste placement in 2013 with Subphase 1C approved in 2016 and Subphase 1D in 2023. Subphases 1A, 1B, and 1C are near permitted grade for CCRs and have been covered with temporary soil and vegetation. Subphase 1D is active and nearing permitted CCR grades.

Phase 2 construction operations began in May 2025 with structural fill placement and construction of the bottom liner system for Subphase 2A - Part 1. This included installation of the composite liner system, installation of the leachate collection system, drainage media placement, and protective cover placement. IDEM approval was received on November 6, 2025, to begin placing waste in Subphase 2A - Part 1. The remaining portion of Phase 2 (2A – Part 2 and 2B) will be constructed during 2026. Subphases 1D and 2A - Part 1 are actively receiving CCR as of this report. CCRs are placed in one-foot lifts in accordance with the facility's Construction Quality Assurance/Quality Control Plan (FMSM, 2008).

In June 2021, IKEC requested authorization under Indiana's Regional General Permit for initiation of a northern ditch to reroute noncontact stormwater around the WBSP and directing it to a National Pollutant Discharge Elimination System (NPDES) permitted stormwater outfall, reducing flows to the WBSP. Appendix C includes a reference drawing for the northern ditch (Stantec, 2021b).

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

Observations
January 19, 2026

In July 2021, IKEC requested a minor permit modification for the Type I RWS landfill and inactive Type III RWS landfill. The purpose was to manage anticipated plant flows and process water streams to meet new federal effluent guidelines. The minor modification allowed construction of two leachate collection ponds and two sediment basins at the Type I landfill. One leachate collection pond and one sediment basin were constructed on the Type III portion of the landfill (northeast ponds) and are permanent units at the facility, reducing flows to the WBSP. The other leachate collection pond and sediment basin were constructed within the boundaries of the Type I landfill (southwest ponds) near the LRCP and are considered temporary by IDEM, reducing flows to the LRCP. The southwest ponds will be removed when the Type I landfill is developed to the landfill's permitted boundaries. IDEM approved IKEC's minor permit modification in May 2022. Construction of the two leachate collection ponds and two sediment basins was completed in 2023.

IKEC's five-year landfill permit was renewed by IDEM in October 2019. A permit renewal was submitted to IDEM in June 2024. Further correspondence between IDEM and IKEC related to the permit renewal was documented on May 23, June 9, August 8, October 9, and December 5, 2025, regarding IDEM's request for additional information.

Ongoing construction continues to reduce flows to the WBSP and LRCP (through diversion channels and lined pond construction), decommissioning and repurposing of the existing WBSP, closure of the LRCP, and modifications necessary to continue disposal of solids in the active landfill. Appendices A and C include figures showing the recent aerial conditions and the proposed five-year conditions.

3.0 OBSERVATIONS

The following sections present observations made during the site visit within the active Type I footprint and including the associated surface drainage features, Northeast and Southwest Leachate Ponds and Sediment Basins, and remaining closed Type III landfill area. Observations identify maintenance items but also may include photographs, slope locations, and items of interest. Refer to Appendix A for figures and observation points along with the photographs and descriptions in Appendix B.

3.1 SURFACE WATER CHANNELS, STORMWATER/SEDIMENT BASINS, AND LEACHATE PONDS

Three surface water drainage channels are constructed to the southwest of the Type I active landfill in the future Phase 3 and 4 area. The westernmost channel is lined with fabric-formed concrete and conveys flows from the surrounding watershed and the Southwest Sediment Basin to an NPDES-permitted outfall to the Ohio River. The central channel and easternmost channels are primarily earthen-lined upstream and riprap-lined downstream. The central channel conveys flow from the temporary cover area and flows southwest into the Southwest Sediment Basin. The easternmost channel flows along the Devil's Backbone and conveys stormwater runoff into the fabric-formed concrete ditch.

Four riprap-lined surface water drainage channels are constructed east of the Type I active landfill. Two channels, one north of the paved haul road and one nearest the natural ridge (Devil's Backbone) to the south, convey flow from the surrounding watershed. These two channels have been rerouted to the northern stormwater ditch (Appendix C), bypassing the WBSP and flowing to an NPDES-permitted outfall.

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

Observations

January 19, 2026

The two drainage channels towards the middle (south of the paved haul road) were originally intended to manage stormwater flow once final cover is placed for Phase I. The two middle channels have been shortened to allow construction of the Northeast Sediment Basin. The remaining channels flow eastward into the collection basin at the limits of the closed portion of the Type III landfill. A culvert connects the basin to the northern stormwater ditch, bypassing the WBSP.

This section includes observations made on October 21, 2025, beginning with the Southwest Sediment Basin and Leachate Pond in the Type I landfill permit footprint, continuing with the Northeast Sediment Basin and Leachate Pond in the closed Type III landfill area, and finishing with the Phase 1 landfill. Areas of the Phase 2 landfill under construction were noted, but observations were limited to active areas only.

Southwest

- The riser structure at the southeast corner of the Southwest Sediment Basin is clear of obstructions and appears to be functioning properly (Points 1 and 4, Appendix A; Photos 1 and 4, Appendix B).
- Areas of bare earth are present on the south slope, west slope, northeast corner, and east slope of the Southwest Sediment Basin (Points 2, 6, 10, 17, and 20, Appendix A; Photos 2, 6, 10, 17, and 20, Appendix B).
- Exposed geotextile fabric liner is present at the edge of the lined stormwater channel, adjacent to the southeast corner of the Southwest Sediment Basin (Point 3, Appendix A; Photo 3, Appendix B).
- The lined stormwater channel on the west and south sides of the Southwest Sediment Basin and on the south side of the Southwest Leachate Pond has sediment build up and vegetation. There was riprap observed in lined stormwater channel on the west side. No obstructions or other hindrances to flow were observed (Points 5 and 14, Appendix A; Photos 5 and 14, Appendix B).
- The emergency spillway on the south side of the Southwest Sediment Basin has vegetation. No obstructions or other hindrances to flow were observed (Point 7, Appendix A; Photo 7, Appendix B).
- Apparent sloughing is present on the south slope and east slope of the Southwest Sediment Basin (Points 8 and 19, Appendix A; Photos 8 and 19, Appendix B).
- A drainage channel leading to the fabric-formed ditch was observed to the southwest of Southwest Sediment Basin. No obstructions or other hinderances to flow were observed (Point 9, Appendix A; Photo 9, Appendix B).
- Standing water and tire rutting are present on the temporary cover in the future Phase 3 footprint (Points 11 and 13, Appendix A; Photos 11 and 13, Appendix B).
- The ditch located in the central area of future Phase 3 footprint was observed to have heavy vegetation present (Point 12, Appendix A; Photo 12, Appendix B).
- Bare soil is present on the southwestern end of the active Phase 2 active construction area (Points

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

Observations

January 19, 2026

14 and 15, Appendix A; Photos 14 and 15, Appendix B).

- A hole is present on the north slope of the Southwest Sediment Basin (Point 16, Appendix A; Photo 16, Appendix B).
- Erosion rills present on the north slope of the Southwest Sediment Basin (Point 18, Appendix A; Photo 18, Appendix B).
- The pump piping for the Southwest Leachate Pond appears to be in good condition, and the area is clear of obstruction (Point 21, Appendix A; Photo 21, Appendix B).
- Exposed geotextile fabric is present at the northwest corner of the Southwest Leachate Pond (Point 22, Appendix A; Photo 22, Appendix B).
- The lined stormwater channel temporary crossing adjacent to the Southwest Leachate Pond was observed to be functioning properly. No obstructions or hinderances to flow were observed (Point 23, Appendix A; Photo 23, Appendix B).
- Bare soil is present above pipe outlet to lined stormwater channel south of the Southwest Leachate Pond (Point 24, Appendix A; Photo 24, Appendix B).
- The headwall from stormwater channel located east of the Southwest Leachate Pond connects to a pipe outlet to the lined stormwater channel. No obstructions or hinderances to flow were observed (Point 25, Appendix A; Photo 25, Appendix B).
- A series of small holes are present on the east slope of stormwater channel located east of the Southwest Leachate Pond (Point 26, Appendix A; Photo 26, Appendix B).
- A small depression, approximately 6 inches in depth, is present on the east slope of stormwater channel located east of the Southwest Leachate Pond (Point 27, Appendix A; Photo 27, Appendix B).
- An area of bare earth with exposed turf reinforcement mat (TRM) is present near the stormwater channel located east of the Southwest Leachate Pond (Point 28, Appendix A; Photo 28, Appendix B).
- A check dam on the north side of the stormwater channel located east of the Southwest Leachate Pond was observed to be washed out (Point 29, Appendix A; Photo 29, Appendix B).
- Stockpiles of soil materials were observed within the future Phase 3 footprint. The material is being utilized for current construction projects. (Point 30, Appendix A; Photo 30, Appendix B).
- Equipment tracks and exposed soil were identified west of the stockpiles adjacent to the northern ditch (Point 74, Appendix A; Photo 74, Appendix B).
- A culvert to the diversion ditch appears to be surrounded by vegetation (Point 75 Appendix A; Photo 75, Appendix B).

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

Observations

January 19, 2026

- Active construction activities were observed in Phase 2 landfill (Point 76 Appendix A; Photo 76, Appendix B).
- A drainage channel leading to the diversion ditch was observed to have heavy vegetation present (Point 77, Appendix A; Photo 7, Appendix B).

Northeast

- The stormwater channel inlet north of the Northeast Leachate Pond flows to the outfall lined with riprap east of the Northeast Leachate Pond. No obstructions or other hinderances to flow were observed (Points 31 and 35, Appendix A; Photos 31 and 35, Appendix B).
- An erosion rill, approximately 18 inches in depth, is present adjacent to riprap-lined area east of the Northeast Leachate Pond (Point 32, Appendix A; Photo 32, Appendix B).
- The ditches located east of the Northeast Leachate Pond and west of the Northeast Sediment Basin were observed to have heavy vegetation present (Points 33 and 40, Appendix A; Photos 33 and 40, Appendix B).
- An estimated 24-inch diameter plastic standpipe was observed west of the Northeast Leachate Pond (Point 36, Appendix A; Photo 36, Appendix B).
- Bare earth and erosion rills are present on the northeast and north slopes of the Northeast Sedimentation Basin (Points 37 and 43, Appendix A; Photos 37 and 43, Appendix B).
- Small holes are present on the north slope of the Northeast Sedimentation Basin (Point 38, Appendix A; Photo 38, Appendix B).
- The headwall adjacent to the truck wash appears to be obstructed by riprap and vegetation. (Point 39, Appendix A; Photo 39, Appendix B).
- Areas of standing water, bare earth, and exposed CCR materials were observed west of the Northeast Sedimentation Basin (Points 41 and 42, Appendix A; Photos 41 and 42, Appendix B).
- The riser structure at the southeast corner of the Northeast Sedimentation Basin is clear of obstructions and appears to be functioning properly (Point 44, Appendix A; Photo 44, Appendix B).
- The culvert outlets to the northern ditch were observed to be clear of obstructions and other hinderances to flow (Point 62, Appendix A; Photo 62, Appendix B).
- The northern ditch crossing was observed to have heavy vegetation present. No obstructions or other hindrances to flow were observed (Point 63, Appendix A; Photo 63, Appendix B).
- Standing water and rutting were observed to the north of the northern ditch (Point 64, Appendix A; Photo 64, Appendix B).
- A failed siltfence was identified along the northern ditch (Point 65, Appendix A; Photo 65, Appendix B).

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

Observations

January 19, 2026

B).

- Erosion rills and scarping were observed on the vegetated stockpile north of Northeast Sedimentation Basin (Points 66 and 67, Appendix A; Photos 66 and 67, Appendix B).
- A drainage channel leading to the northern ditch was observed to have heavy vegetation present. No obstructions or other hindrances to flow were observed (Point 69, Appendix A; Photo 69, Appendix B).
- Fallen trees were identified on a slope north of the northern ditch (Point 71, Appendix A; Photo 71, Appendix B).
- The northern ditch was observed to have heavy vegetation present (Point 72, Appendix A; Photo 72, Appendix B).
- Stockpiles of soil and geosynthetic materials were observed adjacent to the northern ditch. (Point 73, Appendix A; Photo 73, Appendix B).

3.2 TYPE I LANDFILL

The Phase I Type I landfill began accepting CCR in 2008. No subphases within the waste footprint have been permanently capped and closed. Areas nearing final grades have temporary cover, are vegetated, or are mulched and seeded. The slopes are relatively uniform.

- Bare spots with exposed CCR were identified at numerous locations in the temporary cover of Phase 1 (Points 46, 48, 50, 52, 53, and 55 Appendix A; Photos 46, 48, 50, 52, 53, and 55 Appendix B).
- Concrete debris was found on the southeast slope of the temporary cover of Phase 1 (Point 47, Appendix A; Photo 47 Appendix B).
- Holes were identified at several locations in the temporary cover of Phase 1 (Points 49, 56, and 61, Appendix A; Photos 49, 56, and 61, Appendix B).
- The check dam to ditch adjacent to south slope of Phase 1 Landfill was observed to have significant sediment buildup (Point 51, Appendix A; Photo 51 Appendix B).
- Active CCR placement was observed on the southwest side of Phase 1 landfill (Point 54, Appendix A; Photo 54 Appendix B).
- Surficial erosion rills, rutting, and depressions were noted in the temporary cover of Phase 1 (Points 57 through 59, Appendix A; Photos 57 through 59, Appendix B).
- Dead vegetation was identified on the north slope of the temporary cover of Phase 1 from large tire track (Point 60, Appendix A; Photo 60 Appendix B)

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTIONS**

Recommendations
January 19, 2025

4.0 RECOMMENDATIONS

The following recommendations are offered for the Clifty Creek Station's surface water channels, stormwater and sediment basins, leachate ponds, and CCR landfill. The recommendations are listed in no particular order.

Stability Issues:

None noted.

Operational Issues:

- Conduct field surveys to measure current topography and compare to design geometry. Rergrade surface as needed to conform to design. Areas near permitted CCR grades are recommended to be capped, closed, and vegetated (Phase 1).
- Monitor and analyze the data obtained from the installed instrumentation to confirm the water level at the southwest sedimentation and leachate pond.
- Monitor the Northeast and Southwest Sediment Basins and Leachate Ponds for settlement, erosion, and surface water/leachate drainage. Contact an engineer if anomalies are observed that may indicate that the channels or ponds are not functioning as intended.

Maintenance Issues:

- Continue to conduct weekly and monthly field inspections to schedule and maintain the necessary best management practices for the stormwater channels, sediment traps, and rock check dams serving the landfill.
- Maintain the vegetation along the exterior slopes and within the surface drainage channels to facilitate inspections. Remove taller weeds and woody vegetation or reestablish vegetation as needed. Temporary cover should be monitored, maintained, and rergraded if needed to reduce ponding.
- Monitor the noted depressions, erosion rills, sloughing, and areas of exposed ash and rergrade or address the areas as needed.
- Backfill the documented holes or animal burrows with compacted native soils or a mud-pack of soil and cement, ensuring all voids are filled and the entrance(s) are properly sealed.

5.0 REFERENCES

Fuller, Mossbarger, Scott & May Engineers, Inc. (FMSM) (2008). Clifty Creek Fly Coal Ash Landfill Construction. Construction Quality Assurance/Quality Control Plan. Coal Ash Landfill, Type I Restricted Waste Landfill. Attachment 21 (Revised). May 13.

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

References

January 19, 2025

Fuller, Mossbarger, Scott & May Engineers, Inc. (FMSM) (2006). Permit Drawings. Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill Modification. Jefferson County, Madison Township, Indiana. Prepared for American Electric Power, Columbus, Ohio. November. Cincinnati, Ohio.

Indiana Department of Environmental Management (2026). Virtual File Cabinet (<https://vfc.idem.in.gov/DocumentSearch.aspx>).

Indiana Department of Environmental Management (2025a). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. February 10.

Indiana Department of Environmental Management (2025b). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. April 2.

Indiana Department of Environmental Management (2025c). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. May 7.

Indiana Department of Environmental Management (2025d). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. May 13.

Indiana Department of Environmental Management (2025e). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. June 18.

Indiana Department of Environmental Management (2025f). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. July 23.

Indiana Department of Environmental Management (2025g). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. August 19.

Indiana Department of Environmental Management (2025h). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. September 2.

Indiana Department of Environmental Management (2024a). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. November 7.

Indiana Department of Environmental Management (2024b). Inspection Summary Letter. IKEC Clifty Creek RWS I Landfill. EPA ID #: IND 085 048 700. SW Program ID: 39-04. Madison, Jefferson County. December 3.

Indiana Department of Environmental Management (2008). “Approval of Major Modification and Renewal of Solid Waste Facility Permit FP 39-04.” Letter to Indiana-Kentucky Electric Corporation, April 15.

**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

References

January 19, 2025

Indiana-Kentucky Electric Corporation (2025a). "Landfill Site: Inspection Log." Clifty Creek Landfill. October 2024 through October 2025 monthly reports.

Indiana-Kentucky Electric Corporation (2025b). "7-Day Inspection Checklist. Clifty Creek Plant. Landfill." Weekly reports for October 23, 2024 to October 29, 2025.

Indiana-Kentucky Electric Corporation (IKEC) (2016). Closure Plan. CFR 257.102(b). CCR Landfill. Clifty Creek Station. Madison, Indiana. October.

Indiana-Kentucky Electric Corporation (2006). "Type I Restricted Waste Landfill Permit Application, Coal Ash Landfill, Clifty Creek Power Plant, Madison, Jefferson County, Indiana, Attachment 22 – Design Report." Prepared by Fuller, Mossbarger, Scott, & May Engineers, Inc. November.

National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Administration (NOAA) (<https://www.ncei.noaa.gov/cdo-web/quickdata>).

Stantec Consulting Services Inc. (2025a). "Phases 1, 2, and 3 Existing Conditions (June 2025)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill. Drawing no. 11098c-01-econ-2025.dwg. June 10.

Stantec Consulting Services Inc. (2025b). "Estimated 5-Year Construction Limits (June 2030)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill. Drawing no. 11098-c-02-5yrl-2025.dwg. June 10.

Stantec Consulting Services Inc. (2025c). "2024 CR Rule Inspection, Clifty Creek Landfill (January)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill.

Stantec Consulting Services Inc. (2024). "2023 CCR Rule Inspection, Clifty Creek Landfill (January)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill.

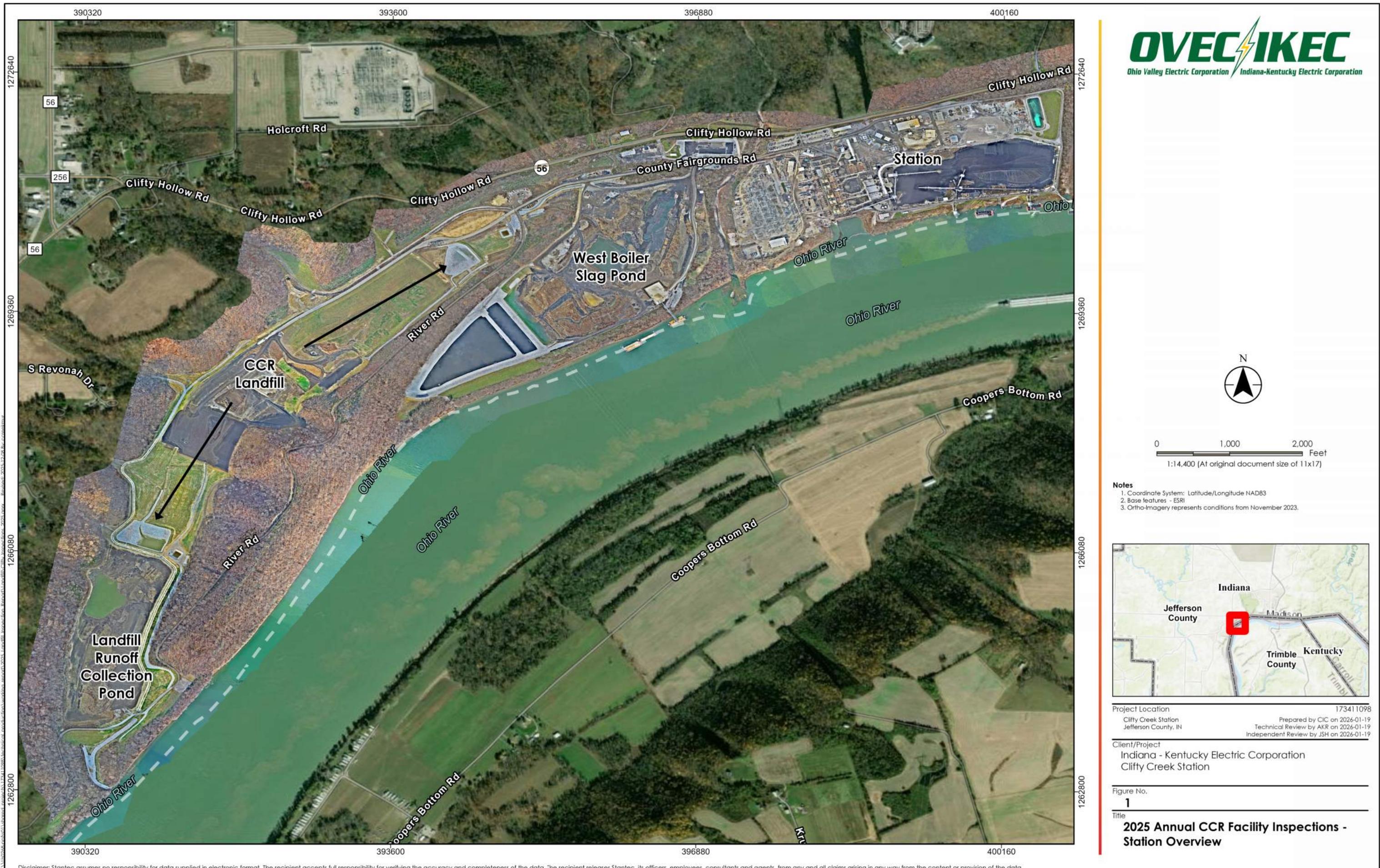
Stantec Consulting Services Inc. (2023). "2022 CCR Rule Inspection, Clifty Creek Landfill (June)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill.

Stantec Consulting Services Inc. (2022). "2021 CCR Rule Inspection, Clifty Creek Landfill (February)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill.

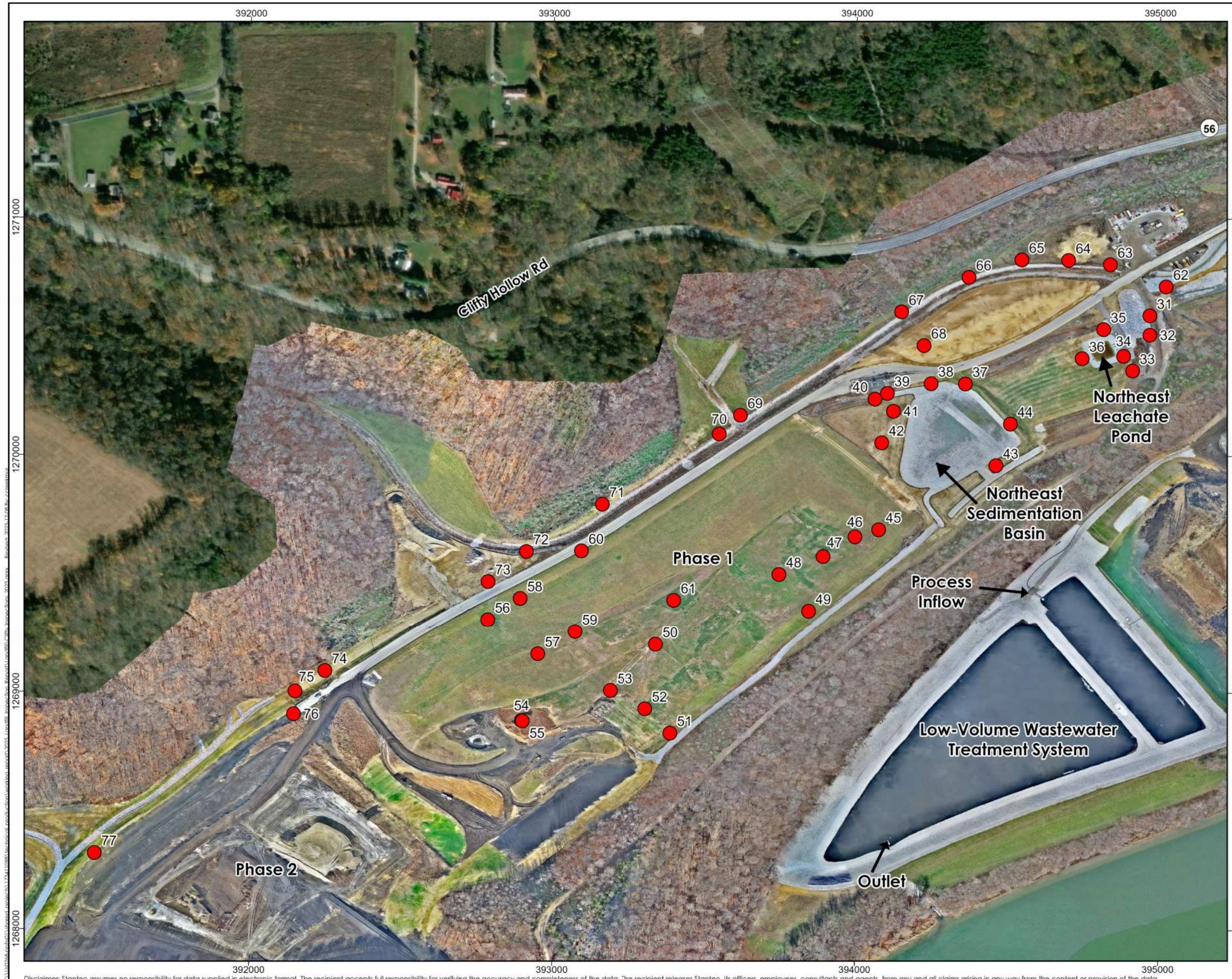
Stantec Consulting Services Inc. (2021a). "2020 CCR Rule Inspection, Clifty Creek Landfill (January)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill.

Stantec Consulting Services Inc. (2021b). "Proposed Ditch Extension and Final Grade Plan." Indiana-Kentucky Electric Corporation. Northern Ditch Re-Route. Clifty Creek Station. Dwg. ND-202-EPSC. April. Section 404 Permit submittal.

Stantec Consulting Services Inc. (2020). "2019 CCR Rule Inspection, Clifty Creek Landfill (January)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill.


**2025 CCR RULE – LANDFILL
CLIFTY CREEK LANDFILL INSPECTION**

References
January 19, 2025


Stantec Consulting Services Inc. (2019). "2018 CCR Rule Inspection, Clifty Creek Landfill (January)." Indiana-Kentucky Electric Corporation. Clifty Creek Coal Ash Landfill.

APPENDIX A

Figures

The logo for OVEC/IKEC features the letters "OVEC" and "IKEC" in a bold, green, sans-serif font. A yellow lightning bolt graphic is positioned between the two words, with its top end resting on the "C" of "IKEC". Below the main text, the words "Ohio Valley Electric Corporation" and "Indiana-Kentucky Electric Corporation" are written in a smaller, italicized green font.

Legend

0 200 400
Feet

Longitude NAD83

Project Location

173411098
Prepared by CIC on 2026-01-19
Technical Review by AKR on 2026-01-19
Independent Review by JSH on 2026-01-19

Client/Project
Indiana - Kentucky Electric Corporation
CCR Landfill

Figure No.

14

Title
2025 Annual CCR Facility Inspection

GPS Data Points

2025 Annual Inspection

Clifty Creek CCR Landfill
Jefferson County,
Indiana

Point ID No.	Comment	Latitude	Longitude	Location
1	Southwest Sediment Basin	-85.44554815	38.72415446	Landfill
2	Bare spots along dike	-85.44567441	38.7240778	Landfill
3	Exposed liner	-85.44577246	38.72401429	Landfill
4	Southwest Sediment Basin riser structure	-85.44582442	38.72414845	Landfill
5	Pipe outlet and sediment build up	-85.44617177	38.72417412	Landfill
6	Bare spot	-85.4469148	38.724407	Landfill
7	Emergency spillway	-85.44704197	38.72446087	Landfill
8	Sloughing on inside slope	-85.4473685	38.72482986	Landfill
9	Drainage channel outlet	-85.44742365	38.72488341	Landfill
10	Bare spot with mulch	-85.44725955	38.72494969	Landfill
11	Standing water	-85.44663364	38.72574589	Landfill
12	Vegetation in central ditch	-85.44612755	38.72580356	Landfill
13	Tire rutting	-85.4466574	38.72582017	Landfill
14	Bare spot and riprap	-85.44593986	38.72820723	Landfill
15	Bare soil	-85.44592327	38.72816119	Landfill
16	Hole	-85.44569002	38.72510143	Landfill
17	Bare spot	-85.44539038	38.72514128	Landfill
18	Erosion rills	-85.44532009	38.72495306	Landfill
19	Sloughing on inside slope	-85.44549072	38.72443403	Landfill
20	Bare spot	-85.44555014	38.72425688	Landfill
21	Southwest Leachate Pond	-85.44282901	38.7268244	Landfill
22	Exposed liner	-85.44510956	38.72429603	Landfill
23	Channel crossing outlet	-85.44547949	38.72394602	Landfill
24	Bare spot above pipe outlet	-85.44505956	38.72352763	Landfill
25	Stormwater channel inlet headwall	-85.4447303	38.72370811	Landfill
26	Small holes	-85.44465012	38.72392969	Landfill
27	Depression (6 in. deep max.)	-85.44463589	38.72397038	Landfill
28	Bare spot with exposed TRM	-85.44428378	38.72511633	Landfill
29	Check dam washout	-85.44546218	38.72402059	Landfill
30	Stockpiles	-85.4448734	38.72491556	Landfill
31	Stormwater channel outfall	-85.43218819	38.73655243	Landfill
32	Erosion channel (18 in. deep max.)	-85.43218902	38.73632916	Landfill
33	Heavy vegetation in ditch	-85.43238797	38.73591379	Landfill
34	Northeast Leachate Pond	-85.43249251	38.73608633	Landfill
35	Inlet and headwall	-85.43272362	38.73639333	Landfill
36	24-inch standpipe	-85.4329726	38.73605665	Landfill
37	Bare spot and erosion rill	-85.43432159	38.73576506	Landfill
38	Small holes	-85.43471698	38.7357689	Landfill
39	Blocked outlet	-85.43522418	38.73565661	Landfill
40	Vegetation in stormwater channel	-85.43536612	38.73559014	Landfill
41	Standing water	-85.43515332	38.73544913	Landfill
42	Bare spot with exposed CCR	-85.43528857	38.73508389	Landfill

Point ID No.	Comment	Latitude	Longitude	Location
43	Bare spot and erosion rill	-85.43396747	38.73481982	Landfill
44	Northeast Sedimentation Basin riser structure	-85.43380046	38.73529998	Landfill
45	Northeast Sedimentation Basin	-85.43532366	38.73407784	Landfill
46	Bare spot	-85.43559748	38.73399581	Landfill
47	Concrete debris	-85.43596588	38.73376689	Landfill
48	Bare spot with exposed CCR	-85.43647582	38.73356055	Landfill
49	Hole	-85.43613497	38.73313535	Landfill
50	Bare spot	-85.4379043	38.73274875	Landfill
51	Check dam with sediment buildup	-85.43773666	38.73171912	Landfill
52	Bare spot	-85.43802761	38.73200185	Landfill
53	Bare spot	-85.4384306	38.73221334	Landfill
54	Active CCR placement	-85.43945884	38.7318668	Landfill
55	Bare spot from construction vehicle	-85.43945044	38.73186089	Landfill
56	Holes	-85.43984954	38.73303536	Landfill
57	Rutting (6 in. deep max.)	-85.43927083	38.73263843	Landfill
58	Depression (16 in. deep max.)	-85.43947489	38.73328337	Landfill
59	Erosion rills (6 in. - 12 in)	-85.43883981	38.73289743	Landfill
60	Dead vegetation	-85.43876569	38.73383367	Landfill
61	Hole	-85.43769328	38.73325953	Landfill
62	Culvert outlets	-85.43200087	38.73688808	Landfill
63	Vegetation around ditch crossing	-85.43264537	38.73714531	Landfill
64	Standing water/rutting	-85.43312846	38.73719474	Landfill
65	Failed silt fence	-85.43366785	38.73719986	Landfill
66	Erosion rills on stockpile	-85.43427972	38.73699889	Landfill
67	Scarp on stockpile	-85.43505865	38.73659805	Landfill
68	Vegetated borrow soil area	-85.43479872	38.73620841	Landfill
69	Drainage channel outlet	-85.43692161	38.7354025	Landfill
70	Phase 1 landfill	-85.43716626	38.73518578	Landfill
71	Fallen trees	-85.43852341	38.73437436	Landfill
72	Vegetation in ditch	-85.43940229	38.73382725	Landfill
73	Stockpiles	-85.43984529	38.73347829	Landfill
74	Equipment tracks	-85.44173459	38.7324447	Landfill
75	Vegetation around culvert	-85.44207913	38.73220894	Landfill
76	Active Phase 2 construction	-85.44209656	38.73194515	Landfill
77	Drainage channel outlet	-85.44440077	38.73034026	Landfill

APPENDIX B

Photographic Log

Photo 1, Point 1

Looking northwest at Southwest Sediment Basin.

Photo 2, Point 2

Southwest Sediment Basin – Bare spots along dike.

Photo 3, Point 3

Exposed geotextile fabric liner on edge of lined stormwater channel adjacent to Southwest Sediment Basin.

Photo 4, Point 4

Southwest Sediment Basin – Riser/inlet structure.

Photo 5, Point 5

Pipe outlet to the lined stormwater channel. Observed sediment build up and vegetation.

Photo 6, Point 6

Southwest Sediment Basin – Bare spot on slope.

Photo 7, Point 7
Southwest Sediment Basin – Emergency spillway to lined stormwater channel.

Photo 8, Point 8
Southwest Sediment Basin – Sloughing on inside slope.

Photo 9, Point 9
Drainage channel outlet southwest of Southwest Sediment Basin.

Photo 10, Point 10
Southwest Sediment Basin – Bare spot with mulch on slope.

Photo 11, Point 11
Phase 3 – Standing water near perimeter.

Photo 12, Point 12
Phase 3 – Vegetation in central ditch.

Photo 13, Point 13
Phase 3 – Tire rutting near perimeter.

Photo 14, Point 14
Bare spot on slope and riprap in lined stormwater channel.

Photo 15, Point 15
Bare soil in Phase 2 active construction.

Photo 16, Point 16
Southwest Sediment Basin – Hole near slope.

Photo 17, Point 17
Southwest Sediment Basin – Bare spot.

Photo 18, Point 18
Southwest Sediment Basin – Erosion rills on slope.

Photo 19, Point 19
Southwest Sediment Basin – Sloughing on inside slope.

Photo 20, Point 20
Southwest Sediment Basin – Bare spot.

Photo 21, Point 21
Southwest Leachate Pond – Pump piping.

Photo 22, Point 22
Southwest Leachate Pond – Geotextile fabric exposed in riprap protection on northwest corner.

Photo 23, Point 23
Lined stormwater channel crossing outlet adjacent to Southwest Leachate Pond.

Photo 24, Point 24
Bare spot above pipe outlet to lined stormwater channel.

Photo 25, Point 25
Stormwater channel inlet headwall
adjacent to Southwest Leachate Pond.

Photo 26, Point 26
Small holes on inside slope of stormwater
channel.

Photo 27, Point 27
Depression (6 in. deep max.) on slope of
stormwater channel.

Photo 28, Point 28
Bare spot with exposed TRM near stormwater channel.

Photo 29, Point 29
Check dam of stormwater channel is washed out.

Photo 30, Point 30
Stockpiles on footprint of Phase 3.

Photo 31, Point 31
Stormwater channel outlet into riprap-lined ditch east of Northeast Leachate Pond.

Photo 32, Point 32
Erosion channel (18 in. deep max.) outside of riprap-lined area.

Photo 33, Point 33
Heavy vegetation in ditch near Northeast Leachate Pond.

Photo 34, Point 34

Looking northwest at Northeast Leachate Pond. Vegetated stockpile in background.

Photo 35, Point 35

Stormwater channel inlet headwall north of Northeast Leachate Pond.

Photo 36, Point 36

An estimated 24-inch diameter standpipe located west of Northeast Leachate Pond and stockpile in the background.


Photo 37, Point 37
Northeast Sedimentation Basin – Bare spot and erosion rill on inner slope.

Photo 38, Point 38
Northeast Sedimentation Basin – Small holes on inner slope.

Photo 39, Point 39
Northeast Sedimentation Basin –
Headwall adjacent to truck washing station
appears to be blocked.

Photo 40, Point 40

Northeast Sedimentation Basin -
Vegetation in stormwater channel.

Photo 41, Point 41

Area of standing water in area northwest
of Northeast Sedimentation Basin.

Photo 42, Point 42

Bare spot with exposed CCR in area
northwest of Northeast Sedimentation
Basin.

Photo 43, Point 43
Northeast Sedimentation Basin – Bare spot and erosion rill on slope.

Photo 44, Point 44
Northeast Sedimentation Basin – Riser/inlet structure.

Photo 45, Point 45
Looking east at Northeast Sedimentation Basin and drainage ditches.

Photo 46, Point 46
Phase 1 – Bare spot on southeast slope temporary cover.

Photo 47, Point 47
Phase 1 – Concrete found on southeast slope.

Photo 48, Point 48
Phase 1 – Bare spot with exposed CCR on southeast slope temporary cover.

Photo 49, Point 49
Phase 1 – Hole on southeast slope temporary cover.

Photo 50, Point 50
Phase 1 – Bare spot on crest temporary cover.

Photo 51, Point 51
Phase 1 – Check dam with sediment buildup in ditch adjacent to south slope.

Photo 52, Point 52
Phase 1 – Bare spot on southwest slope temporary cover.

Photo 53, Point 53
Phase 1 – Bare spot on crest temporary cover.

Photo 54, Point 54
Phase 1 – Active CCR placement on southwest side.

Photo 55, Point 55
Phase 1 – Bare spot from construction vehicle on northwest slope temporary cover.

Photo 56, Point 56
Phase 1 – Holes on northwest slope temporary cover.

Photo 57, Point 57
Phase 1 – Rutting (6 in. deep max.) on northwest slope temporary cover.

Photo 58, Point 58

Phase 1 – Depression (16 in. deep max.) on northwest slope temporary cover.

Photo 59, Point 59

Phase 1 – Erosion rills (6 in. - 12 in) on northwest slope temporary cover.

Photo 60, Point 60

Phase 1 – Dead vegetation from large tire track on north slope temporary cover.

Photo 61, Point 61
Phase 1 – Hole on crest temporary cover.

Photo 62, Point 62
Headwall and outlet to northern ditch.

Photo 63, Point 63
Vegetation around northern ditch crossing.

Photo 64, Point 64
Standing water/rutting slope of northern
ditch.

Photo 65, Point 65
Failed silt fence on slope of northern ditch.

Photo 66, Point 66
Erosion rills on stockpile located north of
Northeast Sedimentation Basin.

Photo 67, Point 67
Scarp on stockpile located north of
Northeast Sedimentation Basin.

Photo 68, Point 68
Vegetated borrow soil stockpile located
north of Northeast Sedimentation Basin.

Photo 69, Point 69
Drainage channel outlet from northern
ditch.

Photo 70, Point 70
Looking south at Phase 1 landfill.

Photo 71, Point 71
Fallen trees on northern slope adjacent to northern ditch.

Photo 72, Point 72
Vegetation in northern ditch.

Photo 73, Point 73

Looking north at stockpile area next to northern ditch.

Photo 74, Point 74

Equipment tracks and bare spot west of stockpile area.

Photo 75, Point 75

Vegetation around culvert to diversion ditch.


Photo 76, Point 76
Phase 2 – Active construction in Phase 2.

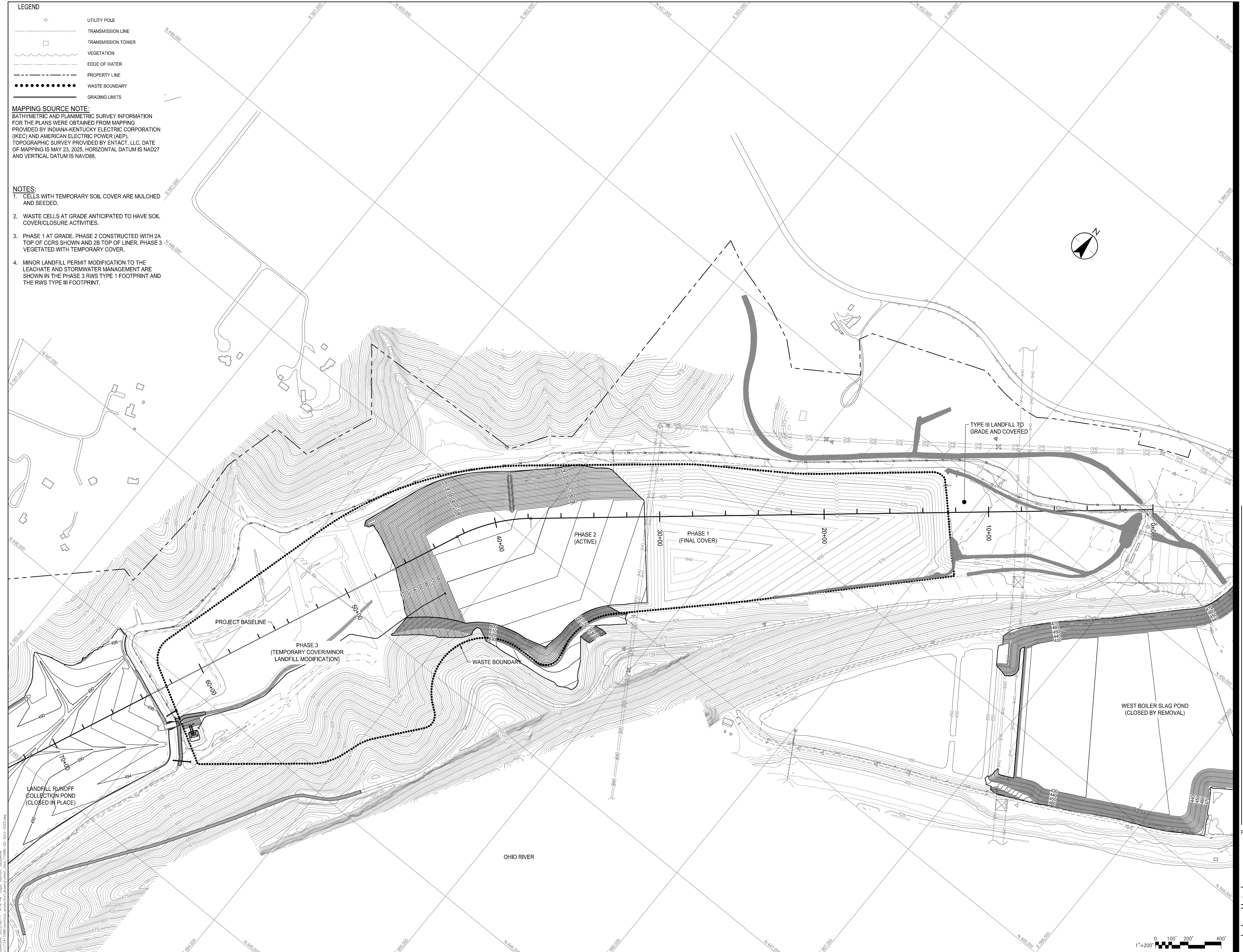


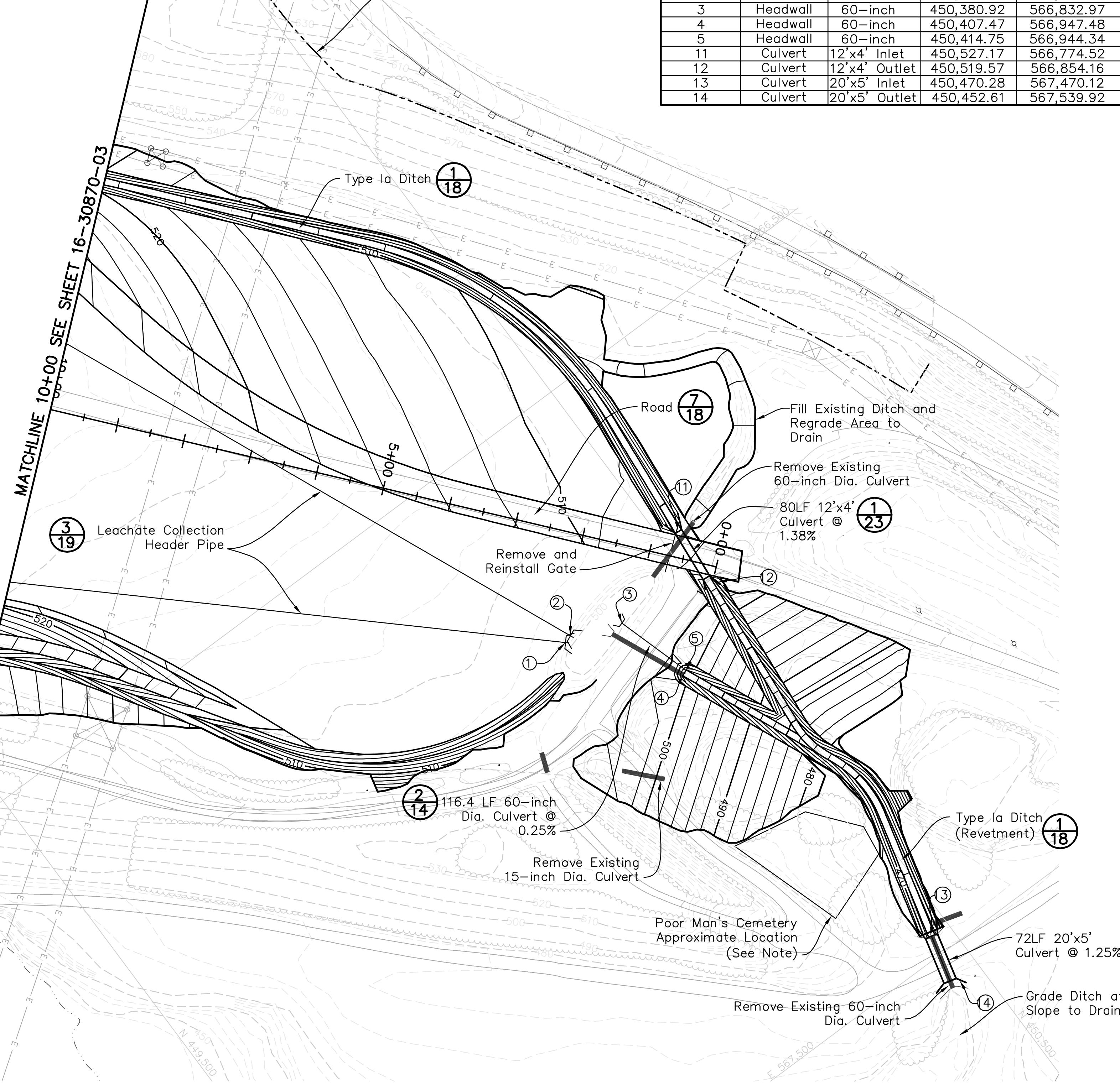
Photo 77, Point 77
Drainage channel outlet from diversion
ditch.

APPENDIX C

Reference Drawings

Notes:

- Topographic mapping for the hill sides and areas east of the existing landfill are supplied by Photogrammetric Services, Inc., Reynoldsburg, Ohio (April 28, 1992). Topographic mapping for the surface of the existing ash pond and landfill was supplied by Henderson Aerial Surveys, Inc., Grove City, Ohio (April 16, 2005) and Bowen, Inc. (June, 2007). Hydrographic survey of existing fly ash pond performed on May 4, 2005.
- Information presented in Indiana State Plane coordinate system (NAD27/NAVD88 Indiana East, feet).
- IKEC will locate and stake the limits of the Poor Man's Cemetery. The Contractor shall not operate within the limits of the Cemetery.
- The flow line of all surface ditches shall be adjusted to match headwalls and wingwalls.
- See Drawing 16-30870-21 for Headwall Details. See Drawing 16-30870-23 for Culvert Details.

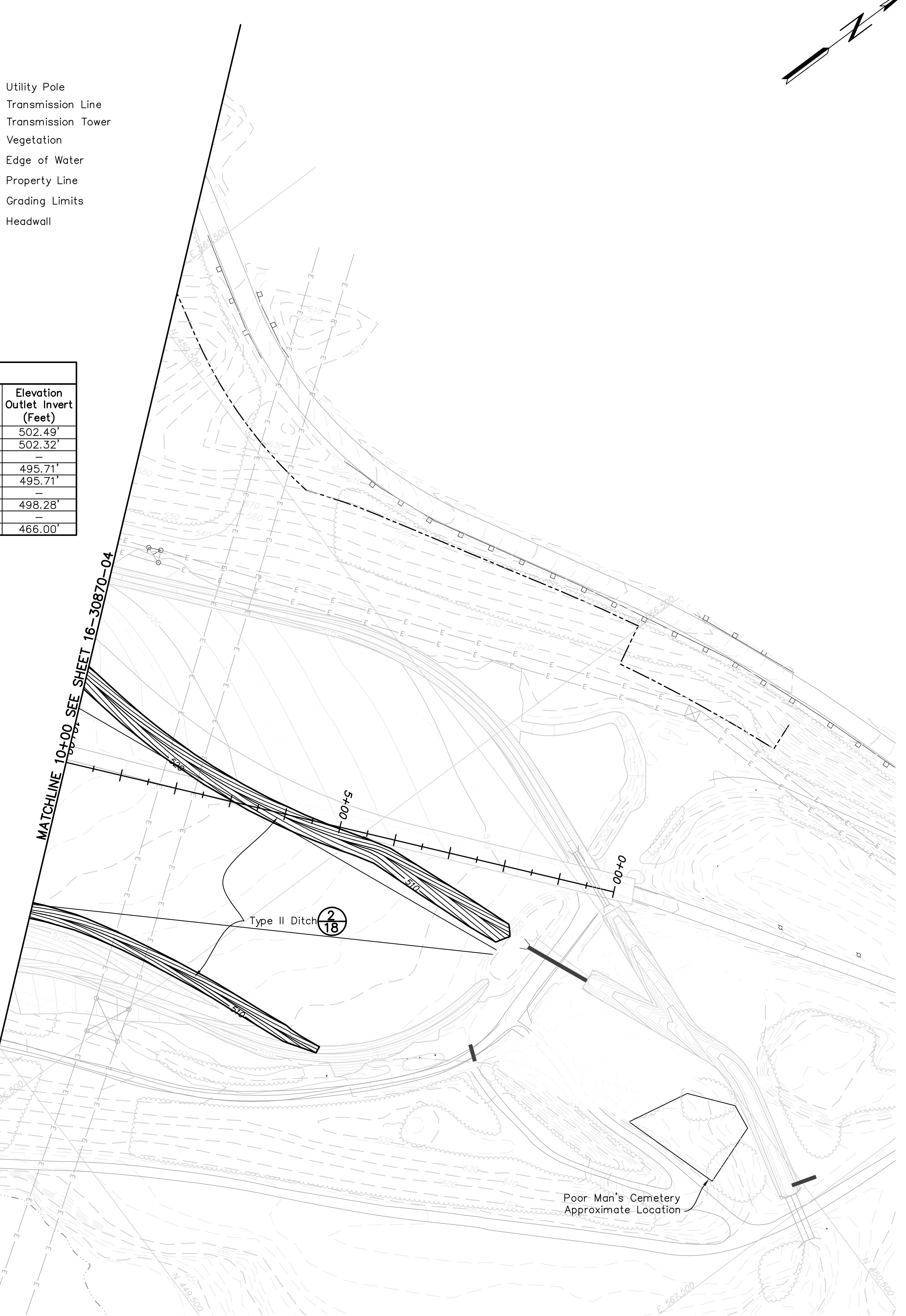

Legend

- Utility Pole
- Transmission Line
- Transmission Tower
- Vegetation
- Edge of Water
- Property Line
- Grading Limits
- Headwall

REFERENCE DRAWINGS

Property Line (Typ.)

MATCHLINE 10+00 SEE SHEET 16-30870-03



INITIAL CONSTRUCTION

Structures							
Structure ID	Type	Size	Northing (Feet)	Easting (Feet)	Rim Elevation (Feet)	Inlet Invert Elevation (Feet)	Elevation Outlet Invert (Feet)
1	Headwall	16-inch	450,297.83	566,806.52	—	—	502.49'
2	Headwall	16-inch	450,309.73	566,803.32	—	—	502.32'
3	Headwall	60-inch	450,380.92	566,832.97	—	496.00'	—
4	Headwall	60-inch	450,407.47	566,947.48	—	—	495.71'
5	Headwall	60-inch	450,414.75	566,944.34	—	—	495.71'
11	Culvert	12'x4' Inlet	450,527.17	566,774.52	—	499.38'	—
12	Culvert	12'x4' Outlet	450,519.57	566,854.16	—	—	498.28'
13	Culvert	20'x5' Inlet	450,470.28	567,470.12	—	466.90'	—
14	Culvert	20'x5' Outlet	450,452.61	567,539.92	—	—	466.00'

GRAPHIC SCALE

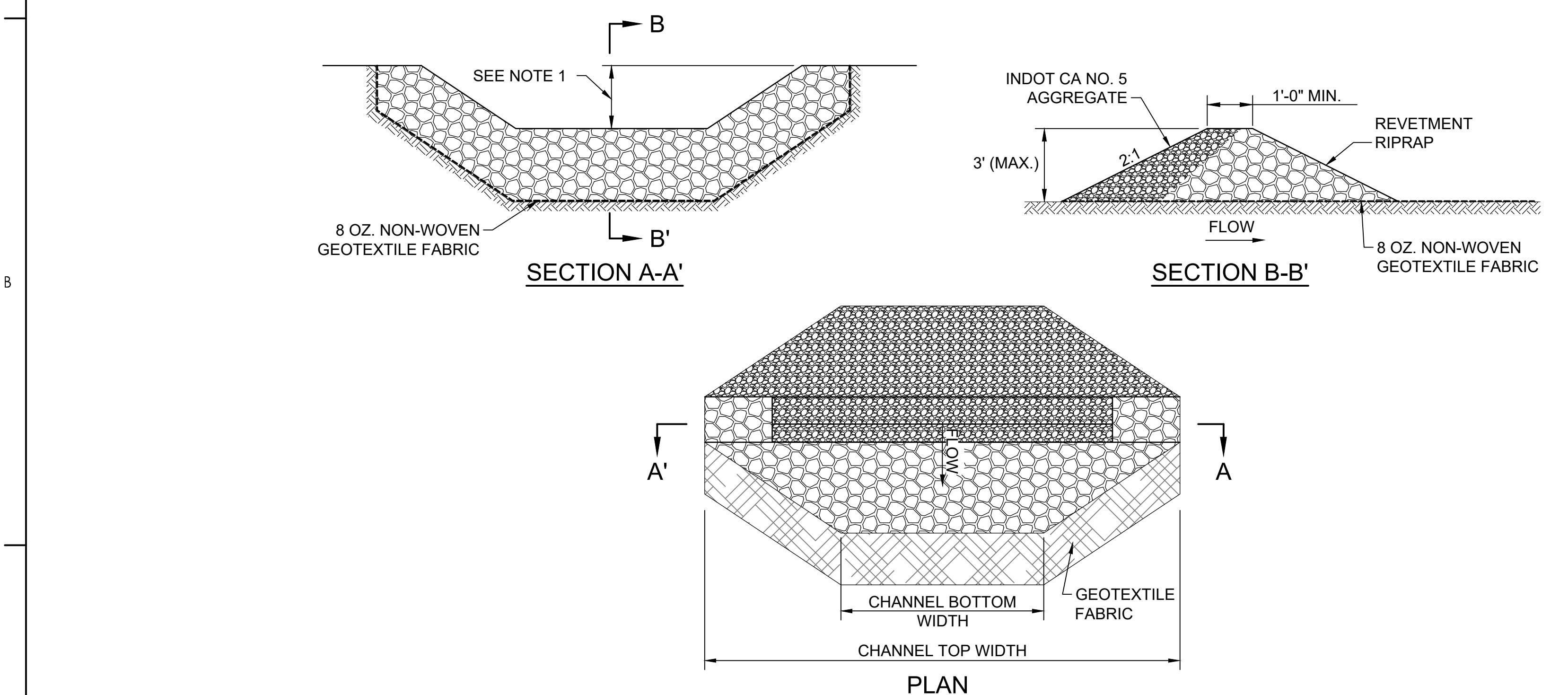
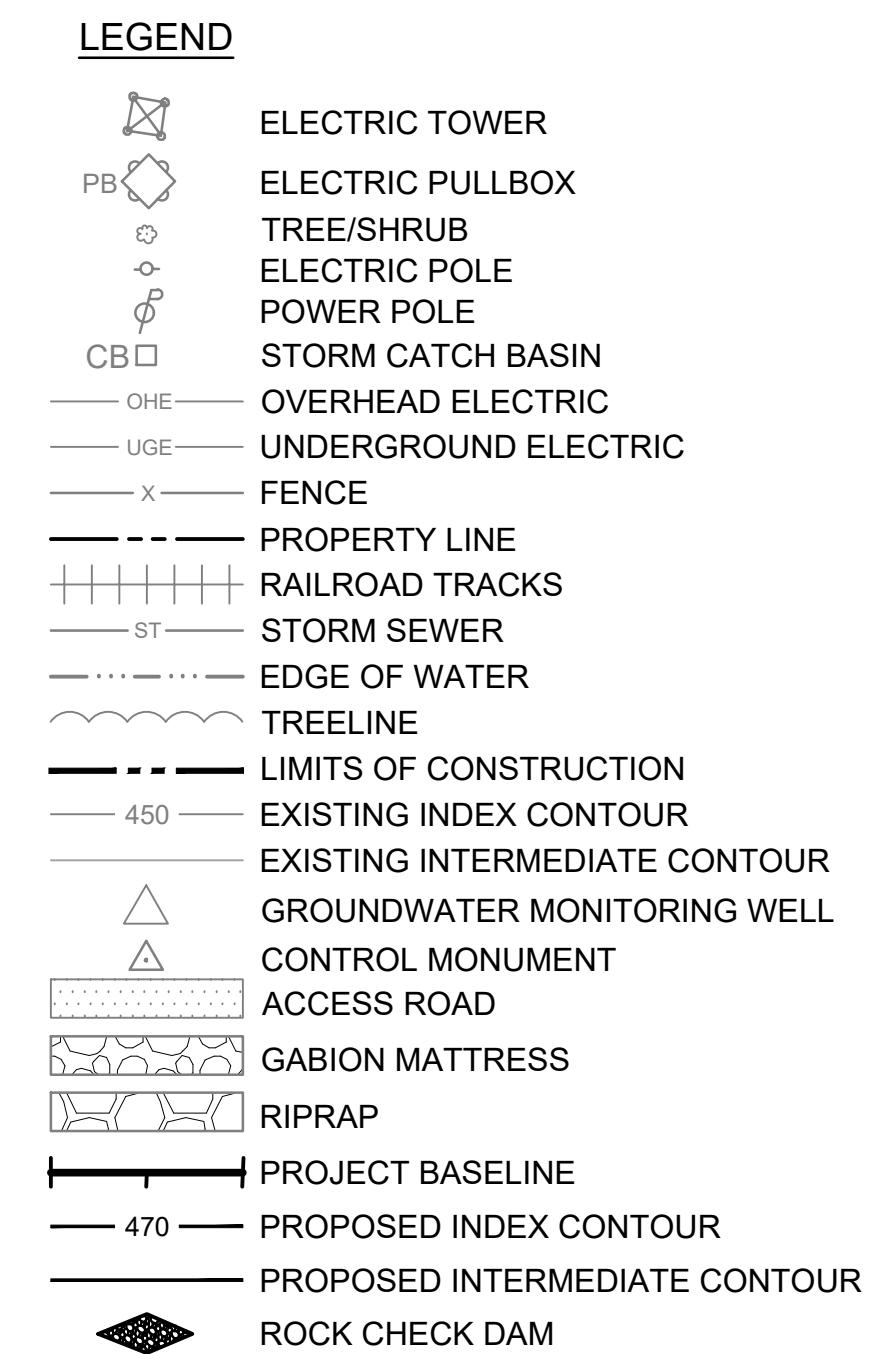
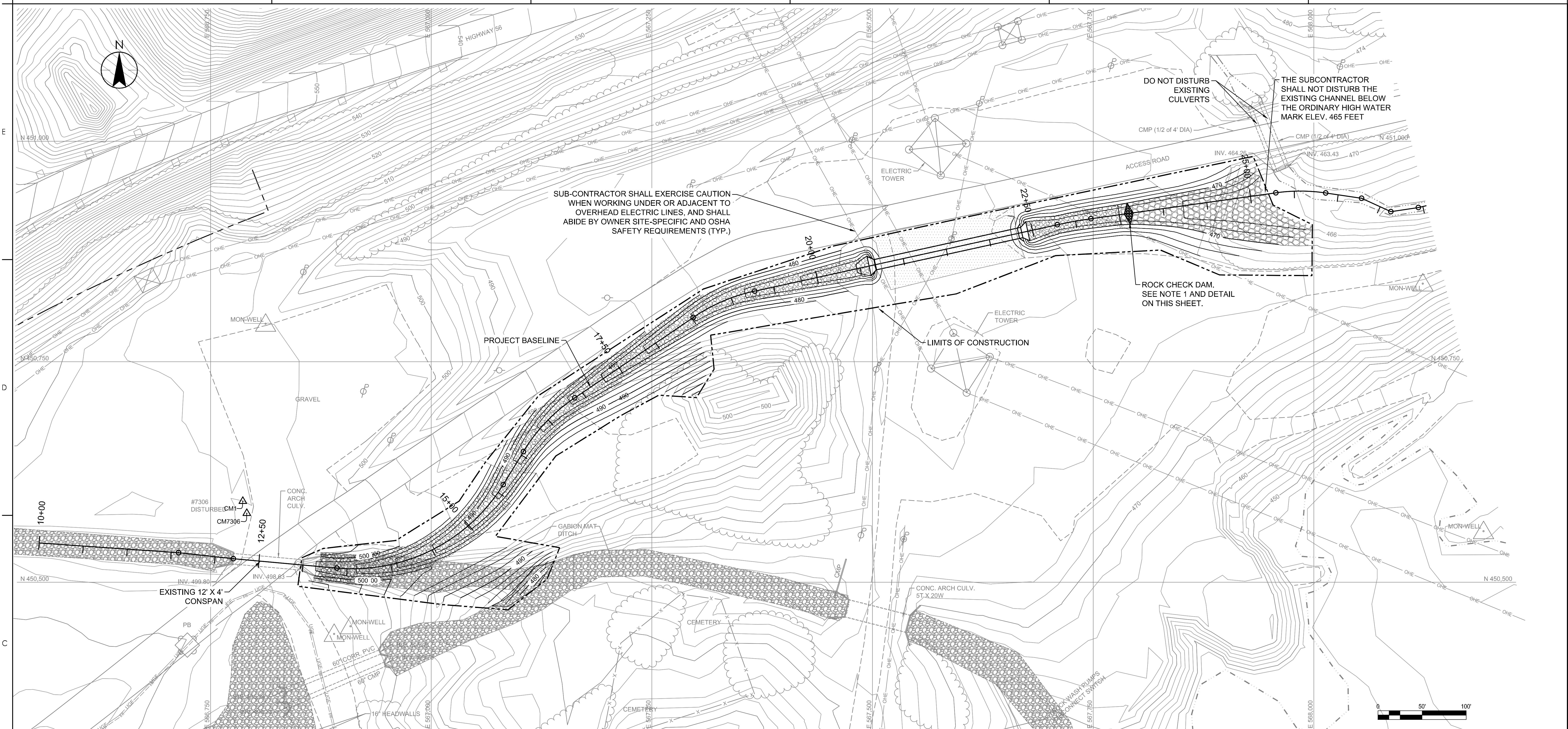
MATCHLINE 10+00 SEE SHEET 16-30870-04

FINAL GRADE

GRAPHIC SCALE

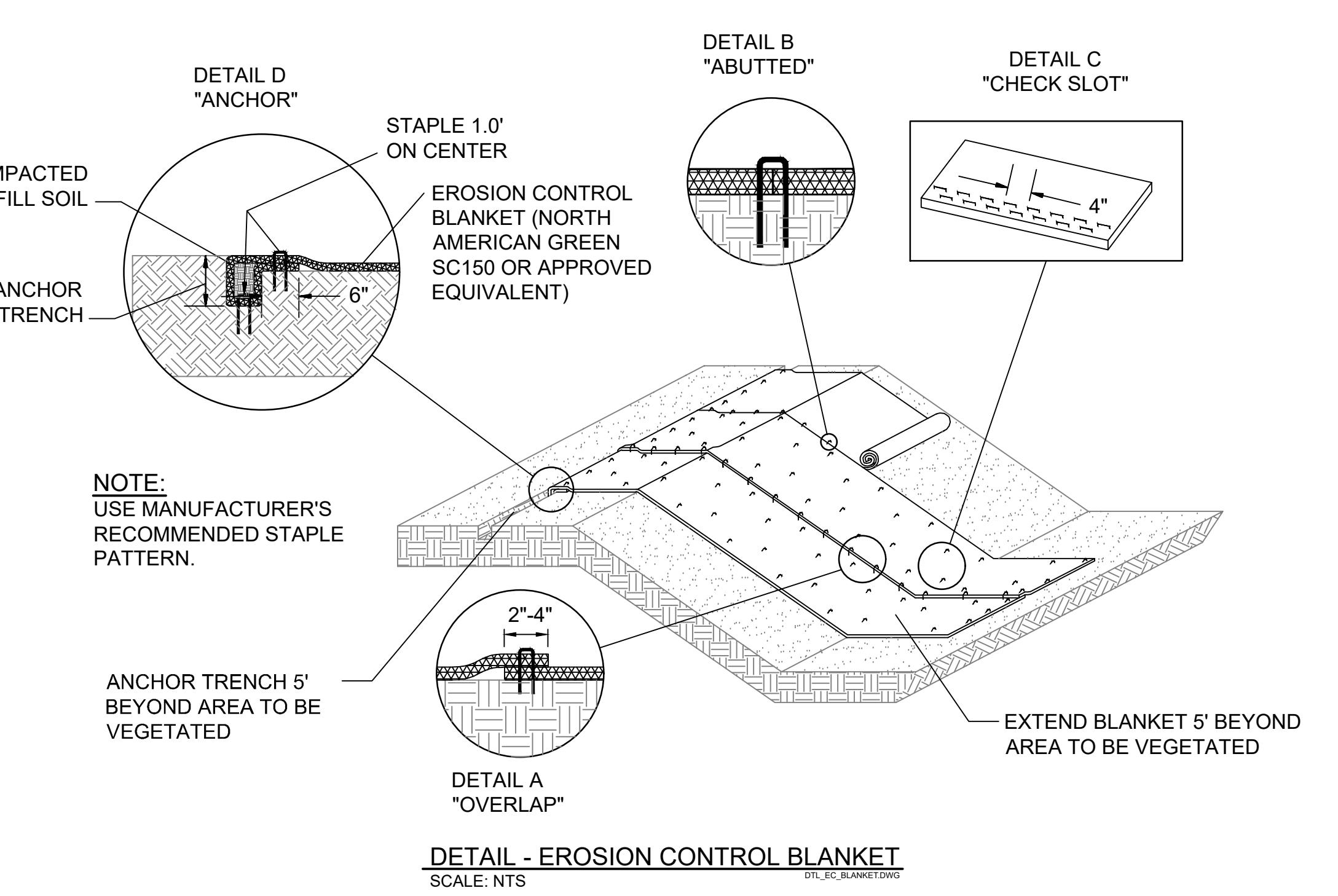
Section or Detail No.
Sheet Where Shown
REFERENCE KEY

SCALE: AS SHOWN
DR: CW
CH: DMD
ENGR: DPG




DATE: JAN., 2010

ROT. DATE: 01/01/2010 USER: MHNERS_CHESTERNE
U:\7PA\474380\1\COALASH\CONSTRUCTION\1-1038010-105-TAFC\DWG
DWG. NO. 16-30870-05
SCALE: CIVIL ENGINEERING DIVISION
DR: CW
CH: DMD
ENGR: DPG
APPROVED BY:
DATE:
AMERICAN ELECTRIC POWER
1 RIVERSIDE PLAZA
COLUMBUS, OH 43215
www.stantec.com

THIS DRAWING IS THE PROPERTY OF THE AMERICAN ELECTRIC POWER SERVICE CORP. AND IS LOANED UPON CONDITION THAT IT IS NOT TO BE REPRODUCED OR COPIED, IN WHOLE OR IN PART, OR USED FOR FURNISHING INFORMATION TO OTHER PERSONS WITHOUT THE WRITTEN CONSENT OF THE AMERICAN SERVICE CORP. OR FOR ANY PURPOSE DETERMINED TO THEIR INTEREST, AND IS TO BE RETURNED UPON REQUEST.


INDIANA - KENTUCKY ELECTRIC CO.
CLIFTY CREEK PLANT
MADISON INDIANA
COAL ASH LANDFILL SUBPHASE 1A
INITIAL CONSTRUCTION AND FINAL GRADE
DWG. NO. 16-30870-05

NOTES:

- MIDDLE OF ROCK CHECK DAM SHALL BE A MINIMUM OF 9-INCHES LOWER THAN SIDES SO FLOW WILL NOT BYPASS TRAP OR ERODE BANKS.
- SPACE ROCK CHECK SO THAT THE TOE OF THE UPSTREAM DAM IS AT THE SAME ELEVATION AS THE OVERFLOW WEIR OF THE DOWNSTREAM DAM.
- EXTEND GEOTEXTILE FABRIC 3'-0" BEYOND DOWNSTREAM TOE OF ROCK CHECK DAM TO PREVENT SCOUR.
- INSTALL AND MAINTAIN ROCK CHECK DAMS IN ACCORDANCE WITH THE INDIANA STORM WATER QUALITY MANUAL, CURRENT EDITION.
- REMOVE ROCK CHECK DAMS AFTER CONSTRUCTION IS COMPLETED AND DISTURBED AREAS ARE STABILIZED.

DETAIL - ROCK CHECK DAM
SCALE: NTS

DETAIL - EROSION CONTROL BLANKET
SCALE: NTS

Client/Project
 OHIO VALLEY ELECTRIC CORPORATION
 INDIANA-KENTUCKY ELECTRIC CORPORATION
 NORTHERN DITCH RE-ROUTE
 CLIFTY CREEK STATION
 MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

Title
 PROPOSED DITCH EXTENSION
 AND FINAL GRADE PLAN

Project No. 175539026
 Revision Sheet B
 Scale 1"=50'
 Drawing No. ND-202-EPSC
 6 of 10

